HMM-separation-based speech recognition for a distant moving speaker
نویسندگان
چکیده
This paper presents a hands-free speech recognition method based on HMM composition and separation for speech contaminated not only by additive noise but also by an acoustic transfer function. The method realizes an improved user interface such that a user is not encumbered by microphone equipment in noisy and reverberant environments. The use of HMM composition has already been proposed for countering additive noise. In this paper, the same approach is extended to handle convolutional acoustic distortion in a reverberant room, by using an HMM to model the acoustic transfer function. The states of this HMM correspond to different positions of the sound source. It can represent the positions of the sound sources, even if the speaker moves. This paper also proposes a new method, HMM separation, for estimating the HMM parameters of the acoustic transfer function on the basis of a maximum likelihood manner. The proposed method is obtained through the reverse of the process of HMM composition, where the model parameters are estimated by maximizing the likelihood of adaptation data uttered from an unknown position. Therefore, measurement of impulse responses is not required. The paper also describes the performance of the proposed methods for recognizing real distant-talking speech. The results of experiments clarify the effectiveness of the proposed method.
منابع مشابه
Speech recognition for a distant moving speaker based on HMM composition and separation
This paper describes a hands-free speech recognition method based on HMM composition and separation for speech contaminated not only by additive noise but also by an acoustic transfer function. The method re alizes an improved user interface such that a user is not encumbered by microphone equipment in noisy and re verberant environments. In this approach, an attempt is made to model acoustic...
متن کاملشبکه عصبی پیچشی با پنجرههای قابل تطبیق برای بازشناسی گفتار
Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...
متن کاملImproved HMM Separation for Distant-Talking Speech Recognition
In distant-talking speech recognition, the recognition accuracy is seriously degraded by reverberation and environmental noise. A robust speech recognition technique in such environments, HMM separation and composition, has been described in [1]. HMM separation estimates the model parameters of the acoustic transfer function using adaptation data uttered from an unknown position in noisy and re...
متن کاملAn implementation and evaluation of an on-line speaker verification system for field trials
This paper presents a HMM-based speaker verification system which was implemented for a field trial. One of the challenges for moving HMM from speech recognition to speaker verification is to understand the HMM score variation and to define a proper measurement which is comparable across speech samples. In this paper we define two basic verification measurements, a qualifier-based measurement a...
متن کاملRobust distant speaker recognition based on position-dependent CMN by combining speaker-specific GMM with speaker-adapted HMM
In this paper, we propose a robust speaker recognition method based on position-dependent Cepstral Mean Normalization (CMN) to compensate for the channel distortion depending on the speaker position. In the training stage, the system measures the transmission characteristics according to the speaker positions from some grid points to the microphone in the room and estimates the compensation par...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. Speech and Audio Processing
دوره 9 شماره
صفحات -
تاریخ انتشار 2001